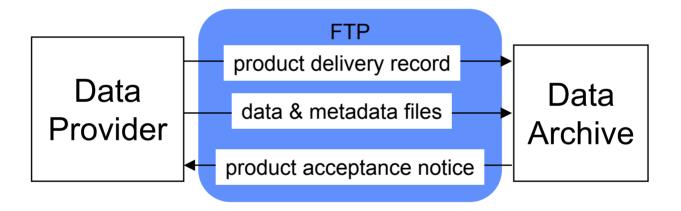


Standards for Reuse and Interoperability at the GES DISC

Christopher Lynnes
Goddard Earth Sciences
Distributed Information Services Center

Why Reusable Standards?

- Interoperability
 - Supports access by external organizations and users
 - -But: difficult to gauge utility and usability
- Reuse
 - Serve as specifications
 - Saves on requirements, design, implementation
 - Particularly useful internally for large, complex systems

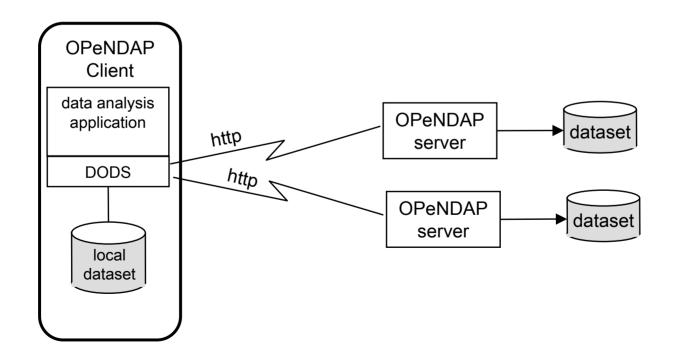

Reusable Standards

- Data Exchange: PDR/PAN
- Data Services: OPeNDAP
- Data Services: OpenGIS
- Data Model: ECHO
- Data Model: GCMD
- Data Services: Web Services

Data Exchange Standard: PDR/PAN

- Product Delivery Record / Product Acceptance Notice
 - Also known as SIPS interface

- Key Characteristics
 - Operational
 - Peer-to-peer
 - Asynchronous


PDR/PAN Interface cont.

- Used to exchange MODIS, AIRS, MLS, OMI data
- Reused to shuttle data locally within GES DISC
- Advantages
 - Well-documented (ECS-SIPS ICD, Vol. 0)
 - High performance
- Disadvantage
 - Whole files only
 - PANs do not specify files successfully ingested

Data Services: OpeNDAP

- Open-source Project for a Network Data Access Protocol (OPeNDAP)
 - Formerly known as DODS
 - TRMM, MODIS, AIRS data available

OPeNDAP Trade

- Key Advantages
 - HDF support
 - Server-side subsetting
- Disadvantages
 - Installation can be tricky
 - Cataloguing still evolving
 - GCMD, ECHO, THREDDS, other?
 - Performance overhead of format translations?
- Internal Reuse: intra-system data intercomparison

Data Services: OpenGIS

- Client-server geographic data and pictures Running two servers
 - Univ. Minn. MapServer
 - Synergy Standalone OGC Server
 - Limited data, but more coming

OpenGIS Trade

Advantages

 Regular georeferenced data are *much* easier for users and clients to use

Disadvantages

- Takes a fair bit of tailoring
- Not friendly to time, depth/height dimensions
- Cataloguing still evolving
- Performance of on-the-fly reprojection and rendering

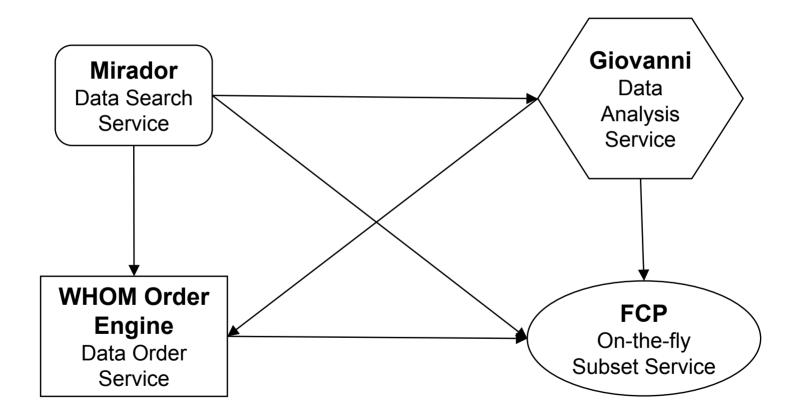
• Dilemmas:

- Which version of spec?
- Which server implementation?
- How do clients see data?

a

Data Model: ECHO

- EOS Clearinghouse (ECHO)
 - Includes collection- and file-level metadata
 - XML-based
 - Data Model based loosely on EOSDIS model
- Reused (sort of) for S4PA
 - Simple, Scalable, Script based Science Processing Archive
 - Disk-based data management and archive system
 - Avoids painful process of defining data model
 - Easy publication of metadata to ECHO
 - Uses XSLT to handle minor deviations from ECHO


GCMD DIFs: Collection-level Metadata

- Data Interchange Format (DIF)
 - Convertible to XML, FGDC
 - Full-featured system (GCMD) for inserting and updating DIFs
- Reuse: GCMD for managing local collection metadata(?)
- Advantages:
 - Easy step to interoperability
- Disadvantages:
 - Cedes some control

Architecture: Web Services

• Based on SOAP, WSDL, UDDI

Web Services Reuse and Interoperability

- Goal: Service-Oriented Architecture
 - Plug and play services
- Internal Reuse
 - Supply services among applications
 - Standardize passing of context: Datasets, parameters, time
- External Interoperability
 - Services available to external organizations/clients
- Dilemmas
 - Language: Perl, java...
 - Which services can we afford to make available externally?

On the Radar: Grid

- Popular way to link distributed systems
 - Could help tie together several mini-systems within GES DISC

• But:

- Tricky to implement
- Better on some platforms than other
- Which version?

Standards Adoption at the GES DISC

- Mandate?
 - E.g. PDR/PAN, GCMD, ECHO
- Benefit to GES DISC User Community?
 - Sometimes cloudy…
- Stability?
 - Backward compatibility is key
- Implementation Cost?
 - Reuse open-source/commercial software?
- Internal Reuse?
 - Amortizes implementation cost